

Overview

- \succ We study what information is captured in the learned representations of molecules via probing
- > Graph transformers tend to learn richer representations
- Randomly initialized models are surprisingly good
- > Probing provides model level explanation

Theoretical v.s. Practical Expressivity

Proofs determining the expressiveness power of GNNs do not consider node features. (Anonymous setting)

A **theoretically more expressive** GNN does not guarantee that it will learn more expressive and better representation

Research Question

Can we discern the information encoded in the learned representation of graph-based neural network?

Setup

We use pre-trained models on HOMO-LUMO gap using PCQM4Mv2 dataset.

Freeze the model parameters and generate representations

Apply probing framework on these representations

Probing Tasks

Atom counting: #Carbon, #Oxygen, #Nitrogen

Meaningful substructures (Functional groups): Arom. rings, Benzene, etc.

3D Properties: Asphericity, Radius of Gyration, etc.

High level Properties (transferability): Toxicity, HIV, etc.

ML4Molecules Workshop

Probing Graph Representations of Molecules Mohammad Sadegh Akhondzadeh Aleksandar Bojchevski Vijay Lingam vijay.lingam@cispa.de mohammad.akhondzadeh@cispa.de

Strategy 1: Probing with Linear Classifiers

Can you **predict** the property from the frozen representations?

Probing dataset

 $D = \{(r_i, p_i)\}_{i=1}^N$ Property Representation

 $D = \{ (x_i, x_i') \}_{i=1}^{N} v_i$

Probing performance ≈ Extractability (Usability)

Strategy 2: Bayesian Probing (More details in paper)

Strategy 3: Pairwise Probing

We construct pairs of molecules that differ only in the property of interest

Project onto the first two principal components (PCA)

Graph Transformers are Better Feature Extractors

Input features contain a lot of information

Transformer-based models perform better on average

Avg Perf on Meaningful Substructures

Strong correlation is observed between the performance of probing on detecting substructures & MoleculeNet tasks

November 28, 2022

bojchevski@cispa.de

Randomly Init. Models Capture Functional Groups

Residual Connections and Jumping Knowledge **Preserve Linear Separability**

One layer of messagepassing is enough for detecting the existence of a sub-structure

Measuring the Ease of Extracting Information by BMI

For the extremely lowdata scenario GIN performs surprisingly better

Graph transformers show $\frac{1}{2}$ higher gains with increase in the size of probing dataset

NeurIPS 2022 Side-Event

